
Computer Architecture and Operating Systems
Lecture 9: Processor and Pipeline

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

We will examine two RISC-V implementations
 A simplified version
 A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: ld, sd
 Arithmetic/logical: add, sub, and, or
 Control transfer: beq

2

CPU Under The Hood

PC instruction memory, fetch instruction

Register numbers register file, read registers

Depending on instruction class

Use ALU to calculate

 Arithmetic result

Memory address for load/store

 Branch comparison

Access data memory for load/store

PC target address or PC + 4
3

Instruction Execution

4

CPU Overview

5

Multiplexers

 Can’t just join wires together

 Use multiplexers

6

Control

Information encoded in binary
Low voltage = 0, High voltage = 1
One wire per bit
Multi-bit data encoded on multi-wire buses

Combinational element
Operate on data
Output is a function of input

State (sequential) elements
Store information

7

Logic Design Basics

AND-gate
Y = A & B

8

Combinational Elements
Adder
Y = A + B

Arithmetic/Logic Unit
Y = F(A, B)

Multiplexer
Y = S ? I1 : I0

A

B

Y
A

B

Y+

I0

I1
Y

M

u

x

S

A

B

YALU

F

Register: stores data in a circuit
Uses a clock signal to determine when to update the

stored value
Edge-triggered: update when Clk changes from 0 to 1

9

Sequential Elements

D

Clk

Q
Clk

D

Q

Register with write control
Only updates on clock edge when write control input is 1
Used when stored value is required later

10

Sequential Elements

D

Clk

Q

Write

Write

D

Q

Clk

Combinational logic transforms data during clock
cycles
Between clock edges
 Input from state elements, output to state element
Longest delay determines clock period

11

Clocking Methodology

Control signals derived from instruction

12

Main Control Unit

13

Datapath With Control

14

R-Type Instruction

15

Load Instruction

16

BEQ Instruction

Longest delay determines clock period

Critical path: load instruction

 Instruction memory register file ALU data
memory register file

Not feasible to vary period for different instructions

Violates design principle

Making the common case fast

We will improve performance by pipelining

17

Performance Issues

Response time

How long it takes to do a task

Throughput

Total work done per unit time

18

Response Time and Throughput

Pipelined laundry: overlapping execution
Parallelism improves performance

19

Pipelining Analogy

Four loads:
Speedup

= 8/3.5 = 2.3

Non-stop:
Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

20

RISC-V Pipeline

Assume time for stages is
100ps for register read or write
200ps for other stages

Compare pipelined datapath with single-cycle datapath

21

Pipeline Performance

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

ld 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

22

Pipeline Performance
Single-Cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

If all stages are balanced
 i.e., all take the same time

Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

If not balanced, speedup is less

Speedup due to increased throughput
Latency (time for each instruction) does not decrease

23

Pipeline Speedup

RISC-V ISA designed for pipelining

All instructions are 32-bits

 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats

 Can decode and read registers in one step

Load/store addressing

 Can calculate address in 3rd stage, access memory in 4th stage

24

Pipelining and ISA Design

Situations that prevent starting the next
instruction in the next cycle

Structure hazard
A required resource is busy

Data hazard
Need to wait for previous instruction to complete its data

read/write

Control hazard
Deciding on control action depends on previous

instruction 25

Hazards

Conflict for use of a resource

In RISC-V pipeline with a single memory

Load/store requires data access

 Instruction fetch would have to stall for that cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require separate
instruction/data memories

Or separate instruction/data caches

26

Structure Hazards

An instruction depends on completion of data access
by a previous instruction
add x19, x0, x1
sub x2, x19, x3

27

Data Hazards

Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

28

Forwarding (aka Bypassing)

Cannot always avoid stalls by forwarding
 If value not computed when needed
Cannot forward backward in time!

29

Load-Use Data Hazard

Reorder code to avoid use of load result in the next
instruction

C code for a = b + e; c = b + f;

30

Code Scheduling to Avoid Stalls

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

Stall

Stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles

Branch determines flow of control

Fetching next instruction depends on branch outcome

Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

In RISC-V pipeline

Need to compare registers and compute target early in
the pipeline

Add hardware to do it in ID stage

31

Control Hazards

Wait until branch outcome determined before
fetching next instruction

32

Stall on Branch

Longer pipelines cannot readily determine branch
outcome early

Stall penalty becomes unacceptable

Predict outcome of branch

Only stall if prediction is wrong

In RISC-V pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay

33

Branch Prediction

Static branch prediction
Based on typical branch behavior
Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior

 e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

34

More-Realistic Branch Prediction

Pipelining improves performance by increasing
instruction throughput

Executes multiple instructions in parallel

Each instruction has the same latency

Subject to hazards

Structure, data, control

Instruction set design affects complexity of pipeline
implementation

35

Pipeline Summary

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline

 Less work per stage shorter clock cycle

Multiple issue
 Replicate pipeline stages multiple pipelines
 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue
• 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice
36

Instruction-Level Parallelism (ILP)

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions

to issue each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

37

Multiple Issue

“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples
Speculate on branch outcome

 Roll back if path taken is different

Speculate on load
 Roll back if location is updated

38

Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect
guess

Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation

39

Compiler/Hardware Speculation

Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle

Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

40

Static Multiple Issue

Compiler must remove some/all hazards

Reorder instructions into issue packets

No dependencies with a packet

Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

Pad with nop if necessary

41

Scheduling Static Multiple Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

42

RISC-V with Static Dual Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling

Though it may still help

Code semantics ensured by the CPU

43

Dynamic Multiple Issue

Allow the CPU to execute instructions out of order to
avoid stalls
But commit result to registers in order

Example
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for ld

44

Dynamic Pipeline Scheduling

Why not just let the compiler schedule code?

Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches

Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

45

Why Do Dynamic Scheduling?

46

Dynamically Scheduled CPU

Results also sent to

any waiting

reservation stations

Reorders

buffer for

register writes Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Yes, but not as much as we’d like

Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
47

Does Multiple Issue Work?

ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall 48

Conclusion

Any Questions?

49

