Faculty (©

Com uter
scnence

Highar Scbeal of Franomic

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 9: Processor and Pipeline

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

CPU Under The Hood

" CPU performance factors

Instruction count
= Determined by ISA and compiler

CPI and Cycle time
" Determined by CPU hardware

=\We will examine two RISC-V implementations

A simplified version
A more realistic pipelined version

=Simple subset, shows most aspects
Memory reference: 1d, sd
Arithmetic/logical: add, sub, and, or
Control transfer: beq

Instruction Execution

"PC — instruction memory, fetch instruction

"Register numbers — register file, read registers

"Depending on instruction class

Use ALU to calculate
= Arithmetic result
* Memory address for load/store
" Branch comparison

Access data memory for load/store
PC < target address or PC+ 4

CPU Overview

.
4 —»
%dd _FAdd
—
[S
L Data
| Register #
PC te»| Address Instruction

Instruction
memory

+I’ Registers
Register #

¢ Register #

>ALU

Address

Data
memory

Data

Multiplexers

()

-

NIV

D

Add

= Can't just join wires together
= Use multiplexers

Address Instruction

Instruction
memory

Data

Register #
Registers

Register #

Register #

()
Y

Address

Data

Data
memory

Control

Branch
)
N
M |
u
S
4—-—\ >
Add - Add M
> o u
/ X |
¢ N
ALU operation
Data |
o> Register # MemWrite
PC [Address Instruction [@— Registers >ALU > Address
' M
_ &> Register # Zero Data
Instruction u memo
memory &~ Register # Reqgyyrite X ry
> Data
MemRead

Control

~— 1

Logic Design Basics

" Information encoded in binary
Low voltage = 0, High voltage =1
One wire per bit
Multi-bit data encoded on multi-wire buses

"Combinational element
Operate on data
Output is a function of input

= State (sequential) elements
Store information

Combinational Elements

" AND-gate "Adder
Y=A&B Y=A+B

A__ A _
T >

'I\/Iul’ilpl?exer = Arithmetic/Logic Unit
Y=S?11:10 Y = F(A B

(M
0 (T -
X SALU Y
S B

F O

Sequential Elements

mRegister: stores data in a circuit

Uses a clock signal to determine when to update the
stored value

Edge-triggered: update when Clk changes from O to 1

e —

Clk

Clk

Sequential Elements

"Register with write control
Only updates on clock edge when write control input is 1
Used when stored value is required later

Clk

D — — Q Write
Write —>
Clk —>

Clocking Methodology

" Combinational logic transforms data during clock
cycles
Between clock edges
Input from state elements, output to state element
Longest delay determines clock period

State
element

Combinational logic

State
element
2

Clock cycle —

State
element

Combinational logic

Main Control Unit

" Control signals derived from instruction

Name Fields
(Bit position) 31:25 24:20 19:15 14:12
(a) R-type funct? rs2 rsi funct3 rd opcode
(b) I|type immediate[11:0] rsl funct3 rd opcode
(c) S-type immed[11:5] rs2 rsl funct3 immed[4:0] opcode
(d) SB-type immed[12,10:5] rs2 rsl funct3 | immed[4:1,11] opcode

ALUOpl ALUOpO I[31] I[30] I[29] I[28] I[27] 1[26] 1[25] 1[14] I[13] I[12]| Operation

0 0 X X X X X X X X X X 0010
X 1 X X X X X X X X X 0110
1 X 0 0 0 0 0 0 0 0 0 0 0010
1 X 0 1 0 0 0 0 0 0 0 0 0110
1 X 0 0 0 0 0 0 0 1 1 1 0000
1 X 0 0 0 0 0 0 0 1 1 0 0001

Datapath With Control

>Add

Branch
\ MemRead
Instruction [6-0] MemtoReg
»Control ALUOp
MemWrite
| ALUSrc
RegWrite

Instruction [19-15] Read

Read ® > -
> PC = ddress register 1 Reaq

Instruction [24-20] Read data 1 >
Instruction _I register 2
[31-01 | Tinstruction [11-7] Write Read

Instruction register data 2
memory

Zero
ALU py
result

Read
Address data

Oxc=—

Write
data Registers

—“xc=20

Write Data

data Mmemory
Instruction [31-0] 1\52 ® 64
N N

Instruction [30,14-12]

R-Type Instruction

|

>Add

PC

Read
address

Instruction
[31-0]

Instruction

Instruction [6-0]

memory

Instruction [19-15]
[

Branch

| MemRead

MemtoReg

> Control ALUOD

MemWrite

| ALUSrc

RegWrite

Read

Instruction [24-20]

register 1 Raag

data 1

Instruction [11-7]

| Write Read

Read
register 2

register data 2

Write

Instruction [31-0]

data Registers

(0

32 64

Imm

—“xc=

Gen

Instruction [30,14-12]

Read
Address data

Write Data
data Mmemory

Oxe=z—

Load Instruction

Add

Branch
MemRead
Instruction [6-0] MemtoReg
» Control ALUOD
MemWrite
| ALUSrc
RegWrite

Instruction [19-15] Read

Read t " | register 1 paaq

address . .
Instruction [24-20 >
[] | Read data 1

Instruction register 2
[31-011" T instruction [11-7] | Write Read NG

Instruction ™| register a2 2
memory

Read
Address data

“xc=
Oxe=z—

Write
data Registers

Write Data
ata Memory

Instruction [31-0]

Instruction [30,14-12]

BEQ Instruction

Y

Add

Branch
| MemRead
Instruction [6-0] | MemtoReg
Controll ALUOp
| MemWrite
/ ALUSrc
RegWrite

Instruction [19-15] Read
PC Rdegxd * " register 1 Reag
address Instruction [24-20] | . data 1

Instruction register 2

[31-0] Instruction [11-7] Write Read »(0
Instruction ™| register data 2
memory

Y

Zero
ALU , |
result

Read
data

Address

Oxec=—

Write p
data Registers

Y

“xoc=Z

_ | Write Data
™ data Memory

Instruction [31-0]

Instruction [30,14-12]

Performance Issues

" ongest delay determines clock period
Critical path: load instruction

Instruction memory — register file - ALU — data
memory — register file

" Not feasible to vary period for different instructions
=\iolates design principle

Making the common case fast
="\We will improve performance by pipelining

Response Time and Throughput

="Response time

How long it takes to do a task
"Throughput

Total work done per unit time

Pipelining Analogy
"Pipelined laundry: overlapping execution
Parallelism improves performance

6 PM 10 11 12 1 2 AM

Time
.] = Four loads:

S S . Speedup
i o=l =8/3.5=2.3
0 B0 = Non-stop:

Time —8PM___ 7 8 9 1|0 1|1 1|2 1| ZTM Speedup
BEEEEEEE = 2n/0.5n+ 1.5 ~ 4

Task
= number of stages

order

» B0
BG5=(l
" [®El
Bo=

B
C
D

RISC-V Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

Pipeline Performance

" Assume time for stages is

100ps for register read or write
200ps for other stages

"Compare pipelined datapath with single-cycle datapath

Instr Instr fetch | Register ALU op Memory Register Total time
read access write

Id 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Program
execution
order

(in instructions)

Id x1, 100(x4)
Id x2, 200(x4)

Id x3, 400(x4)

Program
execution
order

(in instructions)

Id x1, 100(x4)
Id x2, 200(x4)

Id x3, 400(x4)

Pipeline Performance

Single-Cycle (T,=800ps)

Time

Time

200 400 600 800 1000 1200 1400 1600 1800
el veg| o | 0 | e
800 ps ooy | A | 222 | reg
800 ps Ins:;Lthrl]ion
Pipelined (T.=200ps)
200 400 600 800 1000 1200 1400
200ps | eten | [Re8| A | acoees [Red
200ps " [Res] A | o, [reg

200 ps 200 ps 200ps 200 ps 200 ps

Pipeline Speedup

= |f all stages are balanced
i.e., all take the same time

Time between instructions ;elined
= Time between instructions
Number of stages

nonpipelined

" |f not balanced, speedup is less

=Speedup due to increased throughput
Latency (time for each instruction) does not decrease

Pipelining and ISA Design

mRISC-V ISA designed for pipelining

All instructions are 32-bits
= Easier to fetch and decode in one cycle
= c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
" Can decode and read registers in one step

Load/store addressing
= Can calculate address in 3" stage, access memory in 4t stage

Situations that prevent starting the next
instruction in the next cycle

= Structure hazard
A required resource is busy

= Data hazard

Need to wait for previous instruction to complete its data
read/write

" Control hazard
Deciding on control action depends on previous

instruction 6

Structure Hazards

= Conflict for use of a resource

"|n RISC-V pipeline with a single memory
_oad/store requires data access

nstruction fetch would have to stall for that cycle
= Would cause a pipeline “bubble”

"Hence, pipelined datapaths require separate
instruction/data memories

Or separate instruction/data caches

" An instruction depends on completion of data access
by a previous instruction

add x19, x0, x1
sub x2, x19, x3

200 400 600 800 1000 1200 1400 1600

Time [| | | | | | =

add x19, x0, x1 IF —C ID %—MEM WB
4 4
F

bubble bubble bubble bubble bubblé
@)) O ©
bubble bubble bubble bubble bubble
9, 9 9 O O

sub x2, x19, x3 IF —= ID %—MEM WB

Forwarding (aka Bypassing)

" Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

Program

execution _ 200 400 600 800 1000
order Time . . ' ' ']

(in instructions)
add x1, x2, x3 IF

MEM WB

sub x4, x1, x5

SEX MEM WB |

Load-Use Data Hazard

" Cannot always avoid stalls by forwarding
If value not computed when needed
Cannot forward backward in time!

Program

execution 200 400 600 800 1000 1200 1400
order Time . . . T —

(in instructions) I R
Id x1, 0(x2) IF —':: ID >EX MEM WBE
bubble bubble bubble bubble bubble

O O O

sub x4, x1, x5 IF A 1D %—MEM WB§

Code Scheduling to Avoid Stalls

mReorder code to avoid use of load result in the next
Instruction

sCcodefora = b + e; C

1d x1, 0(x0)

1d (x2)8 (x0)
madd x3, x1,

sd x3, 24(x0)

1d (x4)16(x0
SR add x5, xD(x4)

sd x5, 32(x0)

13 cycles 11 cycles @

Control Hazards

"Branch determines flow of control

Fetching next instruction depends on branch outcome

Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch
"[n RISC-V pipeline

Need to compare registers and compute target early in
the pipeline

Add hardware to do it in ID stage

Stall on Branch

=\NVait until branch outcome determined before
fetching next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400 -
order Ime | T | | | T | >
(in instructions)
add x4, x5, x6 ™" |Reg| ALU aE:;zs Reg
, , Instruction Data
beq X1’ XO’ 40 200 ps fetch Reg access
bubble/(bubbled_ bubble/(bubble bubble
9 @
or X7, X8, X9 < »Instruction Data R
\ 400 ps fetch access | 9

Branch Prediction

" onger pipelines cannot readily determine branch
outcome early

Stall penalty becomes unacceptable

= Predict outcome of branch
Only stall if prediction is wrong

"[n RISC-V pipeline
Can predict branches not taken

Fetch instruction after branch, with no delay

More-Realistic Branch Prediction

= Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

" Dynamic branch prediction
Hardware measures actual branch behavior
= e.g., record recent history of each branch

Assume future behavior will continue the trend
* When wrong, stall while re-fetching, and update history

Pipeline Summary

"Pipelining improves performance by increasing
instruction throughput

Executes multiple instructions in parallel

Each instruction has the same latency
=Subject to hazards
Structure, data, control

" nstruction set design affects complexity of pipeline
implementation

Instruction-Level Parallelism (ILP)

"Pipelining: executing multiple instructions in parallel

®To increase ILP
Deeper pipeline
= Less work per stage = shorter clock cycle
Multiple issue
= Replicate pipeline stages = multiple pipelines
= Start multiple instructions per clock cycle
" CPl <1, so use Instructions Per Cycle (IPC)
= E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI =0.25, peak IPC=4
= But dependencies reduce this in practice

Multiple Issue

= Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

"Dynamic multiple issue

CPU examines instruction stream and chooses instructions
to issue each cycle

Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

Speculation

" “Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right

" |f so, complete the operation
" |If not, roll-back and do the right thing

"Common to static and dynamic multiple issue

"Examples
Speculate on branch outcome
= Roll back if path taken is different

Speculate on load
= Roll back if location is updated

Compiler/Hardware Speculation

" Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect
guess

"Hardware can look ahead for instructions to execute
Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation

Static Multiple Issue

" Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle
Determined by pipeline resources required

"Think of an issue packet as a very long instruction
Specifies multiple concurrent operations

= Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue

" Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between packets

= Varies between ISAs; compiler must know!

Pad with nop if necessary

RISC-V with Static Dual Issue

=" Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned
= ALU/branch, then load/store
" Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM wB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch 1= D) EX MEM WB
n + 20 Load/store IF ID EX MEM WB

Dynamic Multiple Issue

" “Superscalar” processors
"CPU decides whether to issue 0O, 1, 2, ... each cycle
Avoiding structural and data hazards

" Avoids the need for compiler scheduling
Though it may still help

Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

= Allow the CPU to execute instructions out of order to

avoid stalls
But commit result to registers in order

"Example

1d x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for Id

Why Do Dynamic Scheduling?

="\Why not just let the compiler schedule code?
= Not all stalls are predicable
e.g., cache misses

"Can’t always schedule around branches
Branch outcome is dynamically determined

" Different implementations of an ISA have different
latencies and hazards

Dynamically Scheduled CPU

Instruction fetch In-order issue /

and decode unit

P P

Reservation | | Reservation Reservation | | Reservation
station station e station station

Functional Integer \ ‘ Integer Floa_ting\ Load- | oyt-of-order execute
units T point storeJ }

- - Commit \ In-order commit
unit

Does Multiple Issue Work?

=Yes, but not as much as we’d like
"Programs have real dependencies that limit ILP

"Some dependencies are hard to eliminate
e.g., pointer aliasing

mSome parallelism is hard to expose
Limited window size during instruction issue

" Memory delays and limited bandwidth
Hard to keep pipelines full

mSpeculation can help if done well

Conclusion

" [SA influences design of datapath and control

" Datapath and control influence design of ISA

"Pipelining improves instruction throughput
using parallelism

More instructions completed per second
Latency for each instruction not reduced

mHazards: structural, data, control

" Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall

Any Questions?

. Cext

start: addi 1, Zero, 0O0x18
addi t2, zZero, 0x21
cycle: beg tl1, t2, done

slt tO, t1, t2
bne t0O0, zero, if less

nop
sub t©tl1l, t1, t2

J cycle
nop

1f less: sub tz2, tZ2, tl
J cycle

done: add t3, tl, zero

